w^2=(27+3)(27)

Simple and best practice solution for w^2=(27+3)(27) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2=(27+3)(27) equation:



w^2=(27+3)(27)
We move all terms to the left:
w^2-((27+3)(27))=0
We add all the numbers together, and all the variables
w^2-(3027)=0
We add all the numbers together, and all the variables
w^2-3027=0
a = 1; b = 0; c = -3027;
Δ = b2-4ac
Δ = 02-4·1·(-3027)
Δ = 12108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12108}=\sqrt{4*3027}=\sqrt{4}*\sqrt{3027}=2\sqrt{3027}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3027}}{2*1}=\frac{0-2\sqrt{3027}}{2} =-\frac{2\sqrt{3027}}{2} =-\sqrt{3027} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3027}}{2*1}=\frac{0+2\sqrt{3027}}{2} =\frac{2\sqrt{3027}}{2} =\sqrt{3027} $

See similar equations:

| 8k+2=2k+4(k+3) | | 21=b-13 | | 3x+16+140=180 | | 5y-2(y+1)+2)=7y | | 9m-5m+18=2m+34 | | 13p=65p= | | 9m–5m+18=2m+34 | | y=64y | | 26=3j+5 | | 6.7x+6=1.7x+21 | | 11x-5=4x-12 | | 5(3c-2)-7c=40-2c  | | 15x-5x+10-10=0 | | 2+25y=25 | | 10x+12=3x-30 | | p-13(p+4)=2(p+1) | | 10x+13=6x+29 | | 2+25y=55 | | 8=14-3r | | 6^2=(9)(x) | | 5x+25=5(25) | | 5x+25=5(25 | | 717/60=1/3+b | | 6^(2)=(9)(x) | | 2a=8.a | | 3k/2-(k+3)/3=8-(k+2)/4 | | 2x^-6=-56 | | 2(2x+5);x=-2 | | 2x2-6=-56 | | (2x−3)(x+6)=0 | | 240-x=90 | | 5x-7;=2 |

Equations solver categories